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Abstract

To develop advanced control systems for optimiz-

ing aircraft engine performance, unmeasurable output
variables must be estimated. The estimation has to be

done in an uncertain environment and be adaptable to

varying degrees of modeling errors and other varia-

tions in engine behavior over its operational life cycle.

This paper presents an approach to estimate unmea-

sured output variables by explicitly modeling the ef-

fects of off-nominal engine behavior as biases on the

measurable output variables. A state variable model

accommodating off-nominal behavior is developed for

the engine, and Kalman filter concepts are used to es-

timate the required variables. Results are presented

from nonlinear engine simulation studies as well as the

application of the estimation algorithm on actual flight

data. The formulation presented has a wide range of

application since it is not restricted or tailored to the

particular application described in the paper.
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FNp
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N2

P

PB

PLA

PSC

PSM

PT2s

Prs

Pn

Pr,

Q

R

Rcyv

SMF

fan inlet guide vane angle, deg

digital electronic engine control

nozzle drag, lb

ram drag, lb

difference

expectation operator

engine model derivative

state error vector

gross thrust, lb

net propulsive thrust, lb

identity matrix

Kalman filter gain

fan rotor speed, rpm

core rotor speed, rpm

Riccati matrix

burner static pressure, lb/in 2

power lever angle, dcg

performance seeking control

propulsion system model

compressor inlet total pressure, lb/in 2

low turbine inlet pressure, Ib/in 2

afterburner inlet total pressure, lb/in 2

nozzle throat lolal pressure, lb/in 2

stale noise covariance matrix

measurement noise covariance matrix

compressor stator vane angle, dcg

fan stall margin



SMHc

SOAPP

SSM

SVM

TMT

TTzs

Tn

TT4.s

Tn

WCFAN

WCHPC

WE

'to 1

w2

T_

y

yauz

high compressor stall margin

state-of-the-art propulsion program

steady state model

state variable model

turbine metal temperature, °R

compressor inlet total temperature, °R

burner inlet total temperature, °R

burner exit total temperature, °R

low turbine inlet total temperature, °R

afterburner inlet total temperature, °R

nozzle throat total temperature, °R

control input vector

corrected fan air flow, lb/sec

corrected compressor air flow, lb/sec

main burner fuel flow, lb/hr

state excitation noise

measurement noise

state vector

output vector

vector of auxiliary, (unmeasured)

output variables

augmented state vector

variation from trim values

Superscripts

T, I transpose of a matrix

estimated value of variable

derivative

Subscript

b

7"tb

N.L.

l

output bias term

flight or simulated data

nonlinear

trim, initial, or steady state

augmented system matrices

Introduction

Efforts to improve aircraft turbine engine efficiency

have led to an increase in the number of engine control

variables and a corresponding increase in the complex-

ity of control laws. Control laws for current engines

are based on classical control theory and empirical

schedules for a nominal engine. Classical control the-

ory has served well for the current and older engines.

The design of future fighters as multifunction aircraft

and development of integrated flight/propulsion con-

trol systems, however, require sophisticated control

systems capable of obtaining the maximum perform-

ance from the engine. Optimal control techniques us-

ing modem control theory are required to obtain ad-

ditional gains in engine performance. For modem air-

craft, accounting for engine variations through designs

based on predetermined control schedules is increas-

ingly difficult because of the increased complexity and

increased number of control effectors on the engines.

Engine-to-engine component variations, engine dete-
rioration, and off-nominal behavior are difficult to ac-

count for in the design of control system schedules.

An adaptive control algorithm, which computes op-

timal control trim settings for the engine while maxi-

mizing the vehicle performance for a given flight con-

dition, accounts for these variations better than gain

scheduling. Specifically, an adaptive trim control sys-

tem computes and applies an incremental steady state

trim to enhance the engine performance. 1

For over a decade, the National Aeronautics and

Space Administration (NASA) Ames Research Cen-

ter, Dryden Flight Research Facility (Ames-Dryden)

has conducted a multidisciplinary flight research pro-

gram on an F-15 airplane. Significant portions of this

research involved the flight evaluation of advanced

propulsion control concepts in programs such as digi-

tal electronic engine control (DEEC), the F100 engine

model derivative (EMD), and highly integrated digi-
tal electronic control (HIDEC). 2 The increased perfor-

mance and improved fuel economy demonstrated on
the F-15 HIDEC research vehicle is the basis of the

performance sccking control (PSC) program, which

will provide additional improvements in the_ areas.

Ames-Dryden, McDonnell Aircraft Company, and

Pratt & Whitney are currently developing and demon-

strating an adaptive PSC system in flight on a NASA

F-15 airplane powered by F100 EMD engines. The

PSC system optimizes aircraft performance by apply-

ing adaptive trim control to the propulsion system op-

erating in a pseudo-steady-state cruise mode. The

trim schedules are determined for a highly nonlin-

2



earpropulsionsystemwhichhassystemandmeasure-
mentnoise,unmeasurableparameters,andsensitivity
tonormaldeteriorationoveritslife cycle.

Figure1 showstheadaptivetrim controlstructure
usedfor thePSC. Thestatevariablemodel(SVM)
andthesteady-statemodel(SSM)whichmodelthedy-
namicandsteady-statebehaviorof anominalengine,
arekeycomponentsof thesystem.Thesemodelsare
storedonboardtheaircraftinatablelook-upformand
arediscussedin moredetailin thefollowingsection.

Thesemodelsareusedin formulatingthepropulsion
systemmodel(PSM)whichrepresentsasmallpertur-
bationmodelof theactualflightpropulsionsystem.
ThePSMcontainsrelationswhichprovideestimates
of performancemeasures(suchasaugmentoreffects,
thrust,andstallmargins)andconstraintequations.A
linearprogrammingalgorithmisusedto findtheopti-
malsolutionandthesecommandsarethenappliedto
theenginethroughtheDEEC.

Thevaluesof outputvariables,whichareoftennot
directlymeasurable,areneededfor theoptimization
algorithmusedin thePSC.Thesevariablesareesti-
matedunderchanginglevelsof enginehealth,man-
ufacturingdifferencesbetweenengines,andotheroff-
nominalbehavior.Accommodatingtheseperformance
variationsinengineshasbeeninvestigatedin twore-
centstudies.3,4

Reference 3 presents an algorithm for estimating the

cause and level of off-nominal engine operation by us-

ing a Kalman filter algorithm to estimate five engine

factors. These five factors, referred to as component

deviation factors (CDF), compensate for off-nominal

performance. These factors were estimated by treat-

ing them as biases, and the original state vector was

augmented to give five additional states. 5 These five

factors are not explicitly used in the optimization algo-

rithm and their physical significance is unclear because

the formulation does not account for biases, prediction

errors, and Reynolds number effects. Since the coeffi-

cients with respect to the CDF parameters are required

in the Kalman filter development, the CDF formulation

requires detailed modeling of the off-nominal process.

A flight data evaluation of this algorithm is described
in Ref. 6.

In Ref. 4, a component tracking filter is used to

achieve the model accuracy required to optimize en-

gine performance. The component tracking filter corn-

bines the concept of state tracking and adaptive filter-

ing to minimize engine/model mismatch. It is based on

a frequency decomposition of the differences between

the sensed engine parameters and the model values.

This paper presents another method of accounting

for off-nominal operation and other modeling inaccu-

racies. Since any variation from the nominal model

would result in a change in the sensed values of the

measured outputs, the off-nominal behavior of an en-

gine is characterized in terms of these changes. Uncer-

tainties associated with any given engine will be repre-

sented as systematic errors in the sensed output param-

eters. These systematic errors will be accounted for by

augmenting the original state equation with bias states.
A Kalman filter is used to estimate the original engine

states and the bias states. The Kalman filter inputs are

measurements from standard F100 engine control in-

strumentation. The auxiliary output equations for the

unmeasured output variables are modified to include
the effect of the bias states.

The concept is validated by applying the developed

filter on both simulation and flight data. For the sim-

ulation data case, the output variables were estimated

by using the data from the available nonlinear engine

simulation. Both a nominal engine and an engine in

which intentional degradation was introduced to create

off-nominal behavior were considered. For the flight

data case, the estimation process was performed using

actual flight data from an F-15 aircraft. For this case,

comparative results are also presented for the proposed

algorithm and the CDF formulation. Both the sim-

ulation and flight evaluations were carded out for a

flight condition of Mach 0.90 and 30,000 It, for a part

power setting.

Engine Description

The engine used in this study is the Pratt & Whitney

F100 EMD low-bypass ratio, twin spool, afterbum-

ing turbofan engine 7 (Fig. 2). The engine is controlled

by a DEEC, a full-authority digital electronic control

system which performs the functions of the standard

F100 engine hydromechanical, unified fuel control,

and supervisory digital electronic engine control.

Engine Models

Pratt & Whitney has developed a comprehensive

nonlinear dynamic engine model, the state-of-the-art

propulsion program (SOAPP) model. This model is



thebestrepresentationof theengineandpredictsen-
gineperformancewith minimalerrorover thefull
powerrangeandflightenvelopeandfor bothsteady-
stateandtransientoperation.Thisnonlinearsimula-
tionisahigh-fidelitymodelthatrepresentseachcom-
ponentin theengineandcontrolbutdoesnotrunin
realtime.

Forreal-timeuse,asetof linearizedSVMswerede-
velopedfromtheSOAPPmodel.Tocovertheentire
flightenvelope,49modelsweredeveloped.Themodel
isselectedasafunctionofburnerstaticpressure(PB).
Thesemodelscomparewellwiththelargescalenon-
linearaerothermalmodelandactualenginetestdata,
andtheycanbe implementedefficientlyin realtime.
Figure3showsasimulationmodelfortheF100engine
basedonthestatevariableformulation.

TheSSMenginerelationshipsandtrimpredictions
(basepoints)arealsoderivedfromtheSOAPPmodel.
A two-dimensionaltablelook-upscheduledon7 val-
uesof PB and 40 values of afterburner total pressure

(P7"6) is needed to represent the steady state informa-

tion. Each SSM consists of a basepoint control vector,

a basepoint output vector, and a sensitivity coefficient

matrix which relates the changes in control positions

to change in outputs.

The PSC algorithm requires the variables listed in

Table 1, which are functions of the engine states and

the input control variables. These variables include

engine outputs which cannot be measured but are re-

quired to calculate performance measures of the en-

gine. An additional set of variables, which are non-

linear functions of the unmeasured output variables,

are listed in Table 2. These variables are used to pre-

dict both the engine performance and the constraints

needed to develop optimal engine controllers.

Kalman Filter Concepts

The entire state vector of the system to be controlled
is often assumed to be measurable. Most of the so-

lutions to optimal control problems are obtained as a

feedback law implementable only if the entire state

vector is available. In most complex systems the en-

tire state vector cannot be measured, and a suitable ap-
proximation to the state vector must be determined and

substituted into the control law. The system that pro-

duces, in deterministic setting, an approximation to the
state vector is called an observer. 8

Kalman and Bucy solved the optimal observer prob-
lem in a stochastic environment, and this solution has

had a tremendous impact on optimal filtering theory. 9

The Kalman filter represents the most widely applied

and demonstrably useful result to emerge from the

state variable approach of"modem control theory. ''1°

The system is

:_ = Ax + Bu + wi (1)

y = Cx + Du + w2 (2)

Where A,/3, C, and D are system matrices in state

variable representation, x is the state vector, u is the

control input vector, y is the output vector, wl is the
state excitation noise, and w2 is the observation or

measurement noise. Both Wl and w2 are white, un-

correlated Gaussian processes, with intensity Q and

R respectively.

The observer is

A

x= A_,+ Bu+ K[y-C_c-Du]

where K is the Kalman filter gain.

The optimal observer problem is finding the matrix

K so as to minimize E{eTRe), where

and R is a positive-definite symmetric weighting ma-

trix. In this problem, E is the expectation operator and

e is the state error vector. If R is a positive-definite

matrix, the optimal observer is called nonsingular. The

Kalman filter is the solution to the nonsingular optimal

observer previously outlined. The optimal observer

problem is solved by choosing the gain matrix. I1

K = pcTR -_

where P is the state error covariance matrix,
E[ ( x - _:) ( x - _:) f ], and is the solution to the matrix

Riccati equation

P = AP + PA T + Q - pcTR-1CP

For a time invariant case, the steady state solution for

P is a constant matrix and is a unique nonnegative def-

inite solution of the algebraic Riccati equation

O= AP + PA T + Q, -pcTR-ICP



Figure4 showsatypicalKalmanfilterstructureused
toestimatestatesandoutputs.

ProposedFormulation

In Kalmanfilter derivation,linearmodelsfor the
systemdynamicsandmeasurementrelationareas-
sumedto beadequatefor developingoptimalestima-
tors. No model is perfect,anda linearmodel,in
particular,is theresulteitherof intentionalapproxi-
mationandsimplificationor of a lackof knowledge
aboutthesystembeingmodeled.12Toaccountforde-
gradedengineoperationandmodelinginaccuracies,
theproposedformulationaugmentsthe outputvec-
tor byaddingabiasvectorto representtheuncertain
parameters.5 Thedynamicequationscanthusbeex-
pressedas

x= Ax+ Bu+wt

y = Cx+ Du+ b+ w2

where b is the bias vector. The bias vector is estimated

by adjoining b to x and defining a new state vector, z

with the condition

Z _ • ° .

b

b=0

The state equation can be rewritten as

_=Atz+Blu+Gwt

y= Ci z + Du + w2

where

A 0
A1 = ......

0 i 0

Ct = [ C ! I]

If the estimate of z is _, where

Z _ ° • .

BI ....
0

I ]0

then the Kalman filter estimate is given by

= Ark+ DlU+ PC_R-1Iy- C1_ -Du]

where P is the steady state solution to

Riccati equation

O= AtP + PAT + GQG T - PC_R-IC1P

the

The auxiliary set of unmeasured output variables

(.Yau_) are related to the engine states and control in-

puts through the algebraic equation

flauz = Hz + Fu

Details of the state variable formulation for the

F100 engine are presented in the appendix. The (.Va,_)

outputs are listed in Table 1.

In spite of the mathematical formalism of the

Kalman filter, engineering insight and experience is

required to develop an effective operational filter al-

gorithm. A mathematical model of both the system

structure and uncertainty is inherently embodied in the

Kalman filter structure. The main design problem is at-

taining an adequate mathematical model upon which

to base the filter• Even after selecting an appropriate

model, the matrices Q and R can be difficult to de-

termine. This is done by a process called "tuning" the

Kalman filter, It is a trial and error procedure for deter-

mining which matrix values yield the best estimation

performance for that particular filter structure.

The matrix R was determined by analysis of flight

data available for the F100 engine. The elements of

matrix Q were, however, selected by evaluating the

performance of the Kalman filter by trial and error.

Figure 5 shows the implementation process used to es-

timate the output variables for the F100 engine using
the Kalman fihcr.

This proposed formulation estimates unmeasured

output variables by explicitly modeling the effects of

off-nominal engine behavior as biases on the measur-

able output variables.

Results

The proposed estimation algorithm was developed

and evaluated for a Mach 0.90 and 30,000 ft flight con-

dition. The algorithm was evaluated by a comparison

with SOAPP simulation results and also by application

to flight data. The flight data results were compared
with the CDF formulation results for the same data.

Simulation Evaluation

The SOAPP simulation evaluations consisted of es-

timating the desired variables using both a nominal and



adegradedengine.In eachcase,thepowerleverangle
(PLA)washeldto37° for 15secandthensteppedup
to43° andheldconstantfor theremainderof therun.

MeasuredoutputswereobtainedfromtheSOAPP
simulationandwerecorruptedwithnoise,asshown
in Table3. Thesearetypicalvaluesobtainedfrom
flight data. Themeasurementswith noiseandthe
valuesof thecontrolvariableswereenteredinto the
estimationalgorithmandthedesiredestimateswere
obtained.TheKalmanfilter statevector,aperturba-
tionof thesteadystateconditions,wasinitializedto
zerofor allstates.

The algorithmneededto generateconsistentstate
estimateswhichwererobustwith respectto themea-
surementcovariancematrixQ (the only variable se-

lected by trial and error). An important aspect of the

development is determining unmeasured output vec-
tor, 9a_,_. Inconsistent estimates of the states would

give different values of 9_,_ for different values of Q

when applied to the same data.

The state vector estimates converged to the same

value for different values of Q. This was evaluated

for values of Q = I and Q = 10I. The difference in the

estimated states for Q = I and Q = 10I, for a nom-

inal engine, is shown in Fig. 6. This figure shows

that the state estimates converge to the same value and

the effect of change in Q on the steady-state response
is minimal.

The five measured output variables obtained from

the SOAPP for a nominal engine were compared with
the estimates of these variables obtained from the filter

(Fig. 7(a)). The prediction values subtracted from the

simulated measurements were held constant through-
out the run. These values were the same as the sim-

ulated measurements at the beginning of the run, ac-

counting for the excellent comparison over the initial

interval. The Kalman filter was not updated in this

evaluation, so the comparisons ir_dicate that the model

is quite robust. The comparisons are very good in spite

of the large change in the operating conditions. The
CDF based formulation would have used five different

models for the PB change of this maneuver.

Figure 7(b) shows the measurement bias estimates.

As expected, they are nearly zero until the PLA is in-

creased. As the engine attains a new operating condi-

tion, the bias parameters increase to levels which ac-
count for the effects not modeled in the SVM.

To assess the condition when significant differences

exist between the measured data and the predicted

data, the following nominal biases were added to

the simulated flight data: A NI (fan rotor speed) =

50.0, AN2 (core rotor speed) = 50.0, APB = 2.0,

A T'7"_,5(low turbine inlet total temperature) = 30.0, and

A P7"6= 0.5. The results of this evaluation (Fig. 8(a))

show that the tracking of the five measurements is

again very good. The final values of the bias estimates

(Fig. 8(b)) are the sum of biases estimated in Fig. 7(b)

and the biases placed on the simulated measurements

as previously listed.

In Fig. 9, estimates of the unmeasured output vari-

ables (_,,x) are compared with the actual values ob-

tained from the SOAPP. The estimates show good

tracking of the simulation values.

Simulation evaluations were then carried out for

a degraded engine by simultaneously introducing the

following deteriorations: (a) high turbine efficiency is

2.5 percent below nominal, (b) low turbine efficiency

is 2.5 percent below nominal, (c) compressor airflow

deviation is 1 lb/sec less than nominal, and (d) the fan

airflow deviation is 5 lb/sec less than nominal.

The results for the simulated degraded engine are

presented in Fig. 10. These results are similar to the

results of Fig. 7 and demonstrate the adaptability and

robustness of the proposed estimator to degraded en-

gine performance. Again, the Kalman filter was not

updated during the evaluation and the predicted con-
stant values subtracted from the simulated data were

the same as those for an engine that was not degraded.

Flight Data Evaluation

The Kalman filter formulation was also evaluated on

flight data obtained on the NASA F-15 research air-

craft. The flight data was obtained at Mach 0.90, an

altitude of 30,000 It, and a PLA of 43.5 °. The time

history of the test data (Fig. 11) starts with no bleed air

being extracted from the test engine. Approximately

40 sec into the run, the pilot manually changed the

bleed switch to extract all the aircraft bleed air require-

ments from the test engine. This maneuver was de-

signed to simulate a change in engine operating effi-

ciency. The engine control system increased fuel flow

(WE) to maintain the scheduled fan speed, resulting in

an increase in TT-, 5. After holding this bleed condition

for approximately 70 sec, the bleed was again switched
back to the initial no bleed air condition.

6



TheKalmanfilter estimationresultsareshownin
Fig. 12. Figure12(a)showsthatthefilter tracksthe
flightmeasurementsaccurately.Initial discrepancies
occurbecausethebiasestimatesstartat zero;how-
ever,this startuptransientis brief,with goodtrack-
ing occurringin approximately20 sec. Although
thetrackingqualityis slightlyworseat thetimethe
bleedswitchingoccurs,the filter rapidlyadaptsto
thesimulatedchangein engineefficiency.Thebias
estimates,shownin Fig.12(b),convergerapidlyto
steady-statevaluesastheenginestateischangedfrom
one conditionto another. The initial startuptran-
sientcouldbeminimizedbyinitializingthebiasesti-
mateswiththeactualvaluesof thebiasesforthegiven
flightcondition.

Figure 13 showsthe resultsfrom the proposed
formulationcomparedwith thecorrespondingresults
fromtheCDFformulation.Theresultswereobtained
usingtheflightdatashowninFig. 11.Theresultsshow
thattheperformanceobtainedbytheproposedmethod
comparesfavorablywiththeCDFproccdure.Asignif-
icantlyimprovedstartuptransientperformanceis evi-
dent.Figure14presentssimilarcomparisonsfor the
estimatesof normallyunmeasuredoutputvariables.
Figure14(a)showstheestimateof compressorinletto-
tal temperature(7"7"2.5)andthemeasuredvalues.The
superiorityof theproposedformulationisclearlyev-
ident,if themeasurementof 7"T25 is considered reli-

able. Figure 14(b) shows the comparative estimates of

corrected fan airflow (WCFAN). The values are com-

parable, with better transient performance for the pro-

posed formulation.

Concluding Remarks

An approach has been proposed to estimate the un-

measured or auxiliary output variables of a turbofan

F100 engine by using Kalman filter concepts. The

approach is based on explicitly modcling the effects

of off-nominal engine behavior as biases on the mea-

sured output variables. Results are presented for esti-

mates of the output variables and are compared with
values obtained from detailed nonlinear simulation of

the engine. The evaluation was carried out for both

a nominal engine and an engine in which intentional

deterioration was introduced. The proposcd filter was

also evaluated for output estimation using actual F-15

flight data.

The formulation is robust with respect to the value

of state covariance matrix Q. A critical component

of the performance seeking control (PSC) problem for

the F100 engine is determining consistent values for

auxiliary output variables. Consistent estimates for the

states were obtained for different values of Q and thus

consistent estimates of the auxiliary output variables
are ensured.

The proposed estimation algorithm was able to ac-

curately predict the values of the output variables for

the simulation studies for both nominal and degraded

engine conditions. The proposed algorithm has been

validated by comparing its estimates with the values

from the detailed nonlinear simulation, and it has per-

formed well on flight data. A comparative study of

the proposed algorithm results with component devia-

tion factors (CDF) results gave additional proof of the

validity of the concept. Unlike the CDF method, the

proposed algorithm does not require detailed model-

ing of the engine degradation process. This formula-

tion has a wide range of application because it is not

restricted or tailored to the particular application de-

scribed in this paper.
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Appendix--State Variable Auxiliary Output Estimation Formulation for an F100 Engine

For the system being considered, the complete state
variable model is

5_ = A18z + BlSu + Gwl

8y = C18z+ DSu + w2

where 1 indicates augmented system matrices, and

5Z =

5N1

5N2

5TMT

NI_

PB

TT4 . 5b

5 U ""

5WF

5As
5CIVV

5RCVV

5y =

6Nl

5N2
5PT 6

8PB

5T7",,.5

where TMT" is the turbine metal temperature, b de-

notes the output bias term, CIVV is the fan inlct guide

vane angle, RCVV is the compressor stator vane an-

gle, and

where A, B, C, and D are constant pcrturbation ma-

trices, numerically dcrived from the SOAPP, 7121 is the

state noise with covariance Q, and w2 is the measure-

ment noise with covafiance R. The elements of R are

obtained from a priori flight data, while those of Q are

selected by trial and error.

The auxiliary set of unmeasured oulput variables

(Y_uz) listcd in Table 1, is given by

fl_.= HSz + FSu + yt

whcrc

H = [H1 i H2]

and H2 reflects the effect of estimated biases and its

elements are derived from the SVM, HI and F are

perturbation matrices derived from the SOAPP, and Yt

is the vector of predicted trim values for the auxiliary
output variables, which is obtained from the SVM.

A
A| _ ---

0 !

C_ = [Ci I]

0

• o .

0

]_1 =

I[.o.]
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Table1.

PT2,5

PB

T_2.5

Tr,

TT4.5

rr,

WCFA_V

WC_pc

Linear auxiliary output variables, PSC

algorithm requirements.

compressor inlet total pressure

bumer static pressure

afterbumer inlet total pressure

compressor inlet total temperature

burner inlet total temperature

burner exit total temperature

low turbine inlet total temperature

afterbumer inlet total temperature

corrected fan air flow

corrected compressor air flow

Table 2. Nonlinear engine variables.

DNOZ nozzle drag

DRAM ram drag

Fa gross thrust

FNP net propulsive force

PT7 nozzle throat total pressure

SMF fan stall margin

SMHc high compressor stall margin

TT7 nozzle throat total temperature

Table 3. Measurement noise statistics.

Parameter Standard deviation

NI 7 rpm

N2 7 rpm

PT6 0.3 lb/in

PT4 0.6 lb/in

TT,, 5 4 OR

J Nozzlemodel

DEEC/propulsion/aircraft system

rll

J State variable model JSteady state model

Nonlinear I ]equations

)

Kalman
filter

Inlet Imodel

i

1Propulsion system
model

Engine
model

Optimization
algorithm

Fig. 1 The performance seeking control adaptive control system.
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Fan

TT2 *

Compressor

WCHPC$

Combustor

High pressure turbine

Low pressure turbine
TMT4:

* DEEC sensors
t Instrumentation

Calculated parameter

N2*

RCVV*

TT2.5t

PT2.5t

WF* TT4.5*

TT3_: PT4$

PT6*

Fig. 2 The F100 engine and sensorlocalions.

PT7_:

TT7$
80017g
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Initial conditions

l ut--f(PB_ PTs)'I PE
PT 6

PT 6

x vector

Core rotor speed, N21
Turbine metal |

temperature, TMT _J

u vector

Main burner fuel

flow, W F

Nozzle area, A j

Fan Inlet guide
vane angle, C IVV

Compressor stator
vane angle, R CVV

u

y vector

Fan rotor speed, N 1

Core rotor speed, N2

Afterburner inlet total

pressure, PT6

Burner static
pressure, PB

Low turbine inlet

temperature, T T 4.5

Fig. 3 The FI00 engine simulation bascd on the state variable model.

900180
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Um O
-1 I

Ym_O _Y _ _- 9OOLB1
÷ ÷

Fig. 4 The Kalman filter structure.

PB, PT6m /_ /_
f _ I PB, PT
(SVMtrim +__ 6.,._ (SVM t rim _'_

Ytl_ L tables j_ wry /_ _"_L tables J
• _ - +'_ SPa
Ym _ ,,'x'xSv _ . . I _._ Yt

Proposed _ bPT 6 +
Kalman I 8zA _

Um _l filter

Ut

Flight data _._(Nonlinear"_ YN.L.

""-I_.alculation_

A

Yaux

^[ PT°b' ]'Z= N1,N2,TMT, Nlb ,N2b, PBb, TT4.5 b

u=[WF,Aj,CIVV,RCVV 1'

Y=[N 1, N2, PB, PT6, TT4.5]'

_aux = IPT2.5 ,TT2.5 , TT3,TT4, TT 6 , WCFAN, WCHPCZ ]'

YN.L.^ = [SMF'SMHc'DRAM'DNoz'FNp'FG ' TT 7' PT7]'

Fig. 5 Modified estimation process using the proposed Kalman filter.
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dNlb,

rpm

2O

0

-2O

dN2 ,

rpm

20--

0

-20
I I I

4

2

dTMT,
OR 0

-2

-4 I I I I I I

20 --

dN1 ,

rpm 0 __
-2o 1 I I I

0 10 20 30 40 50 60

Time, sec 9oo183

Fig. 6 The F100 engine simulation state estimates for a nominal engine at Q = I and Q = 10I, PLA increased from
37° to 43" at 15 sec.
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dN2b,

rpm

2O

0

-2O

.4

dPT6b, .2
.0

Ib/in 2
-.2

-.4

m

dPB b,

Ib/in 2

dTT 4.5b'

oR

0

-1

D

I I I i I I

10 -

-10 I 1 I I ! I
0 10 20 30 40 50 60

Time, sec
900183

Fig. 6 ConcIuded.

15



Measured

--- Estimated

8000 -

N1,

rpm
7500

7000 1 I I I ! I I I

11,200

11,000

N2' 10,800
rpm

10,600

10,400 I

=

I t I I I I I I

PT 6,

Ib/in 2

16

14

12

10

8 I I I I ,,! I 1 i ,I

PB,

Ib/in 2

120

100

80

i

I I I 1 1 I I I I

oR

1800

1600

1400 J I i I I I I I /
0 20 40 60 80 100 120 140 160 180

Time, sec 9oo_84

(a) Mcasurcdand cslimalcd cnginc outputs.

Fig. 7 Thc F100 cnginc simulali<m parameters for a nominal cnginc with PLA incrcascd from 37 ° to 43 ° at 15 scc.
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Nlb,

rpm

N2 b ,

rpm

PT6b,

Ib/in 2

PB b ,

Ib/in 2

TT4.5b'

°R

80

60

40

20

0

80

60

40

20

0

.4

.2

0

".2

-.4

2

-1

-2

40

20

0

-20

-4O

m f

I I I I I I

I I I I I I

l

I I I 1 I 1 I I I

m

I I I I ..... _ I I i I

I I I 1 I I I ! I

0 20 40 60 80 100 120 140 160 180

Time, sec
900185

(b) Bias estimates.

Fig. 7 Cimciudcd.
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m Measured

--- Estimated

N1 ,

rpm

8000

7500

7000 I I I I I I

N2 ,

rpm

11,200

11,000

10,800

10,600

10,400

J

E

I I I I I 1

PT6 ,

Ib/in 2

2O

10
I I I I I I

PB b,

Ib/in 2

120

100

8O
I i I I I I

1800

TT4"5' 1600
oR

1400 I I I I ! I
0 10 20 30 40 50 60

Time, sec 9oo_86

(a) Measured and estimated cnginc outputs.

Fig. 8 The F100 engine simulation paramc[cr estimates with biased mcasurcmcnts for a nominal cnginc, with

PLA increased from 37 ° to 43 ° at 15 scc.
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Nlb,

rprn

N2b,

rpm

80 -

60

40

20

0

100 -

5O

0

I I

1 I

PT6b,

Ib/in 2

-1 I I I I I I

PB b ,

Ib/in 2

0

-0 -

TT4"5b' 20
oR

0

_J

0 10 20 30 40 50 60

Time, sec _oo_87

(b) Bias estimates.

Fig. 8 Concluded.
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_SOAPP

WCFA N ,
ib/sec

200

180

160

140

120

--- Estimated

B

B

] I [ I J I

1200

1100

1000 I I I I I I

TT2. 5'

oR

640

620

600

58O

56O

_.a v_e

1 1 I I I 1

18 --

PT2 5' "'v'v'":-' "-'*_'_"_'-7c-_-_ '-"" """
• 16 --

Ib/in 2

14 I I I J J I

0 10 20 30 40 50 60

Time, sec
900188

Fig. 9 The F100 engine simulation auxiliary output estimates for a nominal engine, with PLA increased from 37 °
to 43 ° at 15 scc.

2O



--Measured

--- Estimated

8OOO

N1 ,

rpm
7500

7000 I I I ! I I

11,200

11,000
N 2 ,

10,800
rpm

10,600

10,400 I I I I I

PT6 ,

Ib/in 2

16

14

12

10

8 I I I I I

PB b,

Ib/in 2

120

100

8O

i

I

TT4. 5'

oR

1800

1600

1400 I I I I I I
10 20 30 40 50 60

Time, sec 9oo_89

(a) Engine oulput estimates.

Fig. 10 The F100 engine simulation parameler cstimalcs for a dclerioraled engine, with PLA increased from 37 °
to 43 ° at 15 sec.
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100 --

Nlb,

rpm
0

-100 I i I I I I

N2b' I

rpm -100

-200 I I I I I I

PT6b,

Ib/in 2

I I I I I

0

PBb, -2

ib/in2 -4
-6

-8 I

TT4"5b' 40

°R 20

0

0 10 20 30 40 50 60

Time, sec
900190

(b) Bias cstimalcs.

Fig. 10 Concludcd.
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NI ,

rpm

No _.._ i _.._

bleed y I -_
,_ _, No !Bleed

bleed I

7700

7600

7500 I

11,200

N2' 11,100
rpm

11,000 i I ....I 1 I I I I

PB,

Ib/in 2

120

110

100

i

I I I 1 I

PT 6 ,

Ib/in2

15

14

13 1 I I I 1 I t

1680

1660

1640

1620

1600

m

I

I I I 1 1 I I

0 20 40 60 80 100 120 140 160 180

Time, sec
900191

(a) Measured OulpuI variablcs.

Fig. 11 The F-15 airplane measured cngine paramclcrs during compressor blccd varialions at Mach 0.9(1, :in

altitude of 30,000 It, and PLA = 43 °.

23



RCVV,
deg

CIVV,
deg

Aj,

in 2

WFp,
Ib/hr

-2 -

-3

-4 I I _ I I I I I [ I

-16 -

-18

-20

432.0

431.8

431.6

431.4

431.2

2600

2500

2400

1 I I ! I 1 i I

! I I I I I I I
0 20 40 60 80 100 120 140 160

Time, sec

(b) Mcasurcd control variables.

Fig. 11 Concluded.
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Measured

--- Estimated

N1 ,

rpm

N 2 ,

rpm

PT 6 ,

Ib/in 2

PB,

Ib/in 2

TT 4.5'

°R

7800 F

7600

7400 ]

11,200

11,100

11,000

F I

15 -

14

13

110

105

100

I I I I I I I I i

J

1700

1600

1500

=o

I I ! I I I 1

0 20 40 60 80 100 120 140

Time, sec

(a) Output estimates.

Fig. 12 Thc F100 cnginc paramctcr cstimalcs from the flight data in Fig. ll.
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0

Nlb' -100
rpm

-200

8O

6O

N2b' 40
rpm

20

.0

-.2

PT6b' -.4

Ib/in 2
-,6

-.8

0

PB b ,

ib/in2 -5

-10

8O

6O
TT4.5b'

40
°R

20

D

t i I i I I I

I I

I I

- I I I I I I I ! I

m

t 1 I I I i 1 I I
20 40 60 80 100 120 140 160 180

Time, sec 9oo_94

(b) Bias cstimatcs.

Fig. 12 Concludcd.
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--- Proposed formulation

CDF formulation

TT4. 5'

oR

1700

1600

1500 I I ! I I I I I I

PB,

Ib/in 2

120

11o .

100 I

N 2 ,

rpm

11,600

11,400

11,200

11,000

10,800 I i I I I I I I I

N1 ,

rpm

7800

7600

7400 [ I I I I I i I '
0 20 40 60 80 100 120 140 160 180

Time, sec
90l) J 95

Fig. 13 Proposed formulation estimated outputs from flight data compared with CDF formulation estimates from

flight data.
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655 -

TT2 5

oR

650

645

640

_ /--CDF
L _ / formulation

635 - FMeasured value
/

625 ..,-,i,- ,,..

620 - rased estimate

I l 1 .... 1_, 1 I t I l615

0 20 40 60 80 100 120 140 160 180

Time, sec
900196

(a) Compressor inlet total tcmpcraturc estimates.

Fig. 14 The proposed formulation and the CDF formulation engine parameter estimates from flight data compared

with measured engine parameters.
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WCFAN,

Ib/sec

180

178 D

176 -

174

172

170

168

166

164

r

P
0

I

20

: T ,,_ _ '.',.... ,

t

ft 1 I I

40 60 80 100

Time, sec

(b) Corrcctcd fan airflow estimates.

Fig. 14 Concluded.

-CDF formulation
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